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Querying structured databases with natural language (NL2SQL) has remained a diicult problem for years. Recently, the
advancement of machine learning (ML), natural language processing (NLP), and large language models (LLM) have led to
signiicant improvements in performance, with the best model achieving ∼85% percent accuracy on the benchmark Spider
dataset. However, there is a lack of a systematic understanding of the types, causes, and efectiveness of error-handling
mechanisms of errors for erroneous queries nowadays. To bridge the gap, a taxonomy of errors made by four representative
NL2SQL models was built in this work, along with an in-depth analysis of the errors. Second, the causes of model errors
were explored by analyzing the model-human attention alignment to the natural language query. Last, a within-subjects user
study with 26 participants was conducted to investigate the efectiveness of three interactive error-handling mechanisms in
NL2SQL. Findings from this paper shed light on the design of model structure and error discovery and repair strategies for
natural language data query interfaces in the future.
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1 INTRODUCTION

Data querying is an indispensable step in data analysis, sensemaking, and decision-making processes∗∗. However,
traditional data query interfaces require users to specify their queries in a formal language such as SQL, leading to
signiicant learning barriers for non-expert users who have little programming experience [64, 68]. This problem
becomes increasingly important in the Big Data era, given the rising needs for end users in many key domains
including business, healthcare, public policy, scientiic research, etc. To address this problem, natural language
(NL) data query interfaces allow users to express data queries in natural language. For example, a semantic parser
can map the user’s natural language query into a formal data query language such as SQL (NL2SQL). Such NL
interfaces have shown the potential to lower the bar for data querying and support lexible data exploration for
end users [5, 21, 75, 83].
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However, achieving robust NL2SQL parsing in realistic scenarios is diicult because of the ambiguity in natural
language and the complex structures (e.g., nested queries, joined queries) in the target queries. For example, in
Spider [90], a large-scale complex and cross-domain dataset for NL2SQL parsing, the accuracy of state-of-the-art
models remained low in the 20% to 30% range for quite some time until 2019. In the past three years, advances
in deep learning and large language models have brought us closer than ever to achieving useful performance
on this important taskÐwith the use of state-of-the-art end-to-end models such as [23, 24, 31, 57], the accuracy
quickly increased to about 85%. However, the development in model performance appears to have stagnated in
the 85% range recently, suggesting a bottleneck in model-only methods for NL2SQL.

This work focuses on the lip side of the 85% accuracyÐthe 15% erroneous queries. We started by understanding
łWhat errors current NL2SQL models make.ž Then, we investigate łHow NL2SQL models made these errorsž and
łHow users handle these errorsž with diferent studies.

We irst performed a comprehensive analysis of SQL errors made by representative state-of-the-art NL2SQL
models and developed an axial taxonomy of those errors. We reproduced four representative high-performing
models with various structures from the Spider leaderboard∗ÐDIN-SQL + GPT-4 [58], SmBop + GraPPa (Sm-
Bop) [61], BRIDGE v2 + BERT (BRIDGE) [47], and GAZP + BERT (GAZP) [95]. For each model, we collected all
model-generated queries for the Spider dataset whose execution results varied from the ground truth results. Four
authors conducted multiple rounds of qualitative coding and reinement on these errors to derive a taxonomy of
the errors. The error analysis reveals that, despite having diferent model architectures and performance, NL2SQL
errors originate from a common set of queries and demonstrate a similar distribution across various error types.

Given the error distribution, we further investigate the potential reasons behind the error. Inspired by recent
work [6, 32, 46], which showed that attention alignment can improve the performance in code summarization,
machine translation, and visual feature representation, we hypothesize that SQL errors generated by NL2SQL
models derive from the misalignment between the model’s attention and human’s attention toward the natural
language query. To validate this hypothesis, two authors (SQL experts) manually annotated important words
(human attention) in the NL queries when they try to understand the query. The model-focused words (model
attention) were obtained by calculating the weight of each word that contributed to the model’s prediction using
a perturbation-based method [48]. The attention alignment was measured by computing the overlap between the
human-focused words and the model-focused words. The results showed a signiicant diference in attention
alignment between erroneous queries and correctly predicted queries, implying that NL2SQL errors are highly
correlated with attention misalignment. The indings suggest the promise of future work in aligning model
attention with human attention to improve model performance.

To support NL2SQL models in real-world deployment, it is also important to provide efective error-handling
mechanisms for users, which enable human users to discover and repair errors. In both human-computer
interaction (HCI) and natural language processing (NLP) communities, we have seen eforts using diferent
approaches. In general, there are three representative paradigms. First, following the task decomposition paradigm,
strategies such as DIY [52] decompose a generated SQL statement into a sequence of incremental subqueries and
provide step-by-step explanations to help users identify errors. Second, based on query visualization, approaches
such as QueryVis [39], QUEST [9], and SQLVis [51] seek to improve user understanding of the generated
SQL statements by visualizing the structures and relations among entities and tables in a query. Third, using
conversational agents, works such as [29, 84, 88] implement chatbots to communicate the model’s current state
with users and update the results with user feedback through dialogs. These interactive approaches help the model
and humans to synchronize their attention. Consequently, humans gain conidence in the decisions generated by
the model, while the models can make better decisions under human guidance.

∗https://yale-lily.github.io/spider
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Although these approaches were shown to be useful in diferent contexts in individual evaluations, it is unclear
how efective each approach is for users with various SQL expertise. Furthermore, as most of these methods were
evaluated with only simple NL2SQL errors, it is unclear how well they will perform on errors made by state-of-
the-art NL2SQL models on complex datasets such as Spider. Therefore, we selected three representative models
and conducted a controlled user study (� = 26) to investigate the efectiveness and eiciency of representative
error discovery and repair approaches. Speciically, we selected (i) an explanation- and example-based approach
that supports ixing the SQL query through entity mapping between the natural language (NL) question and
the generated query and discovering the error through a step-by-step NL explanation approach (DIY [52]), (ii)
an explanation-based SQL visualization approach (SQLVis [51]), and (iii) a conversational dialog approach [88].
The study reveals that these error-handling mechanisms have limited impacts on increasing the eiciency and
accuracy of error discovery and repair for errors made by state-of-the-art NL2SQL models. Finally, we discussed
the implications for future error-handling mechanisms in NL query interfaces.

To conclude, this paper presents the following four contributions:
• We developed a taxonomy of error types for three representative state-of-the-art NL2SQL models through
iterative and axial coding procedures.

• We conducted a comprehensive analysis that compared model attention to human attention. The result
shows that NL2SQL errors are highly correlated with attention misalignment between humans and models.

• We conducted a controlled user study that investigated the efectiveness and eiciency of three representa-
tive NL2SQL error discovery and repair methods.

• We discussed the implications for designing future error-handling mechanisms in natural language query
interfaces.

2 RELATED WORK

2.1 NL2SQL techniques

Supporting natural language queries for relational databases is a long-standing problem in both the database (DB)
and NLP communities. Given a relational database � and a natural language query ��� to � , an NL2SQL model
aims to ind an equivalent SQL statement ���� to answer ��� . The early methods of mapping ��� to ���� depend
mainly on the development of intermediate logical representation [27, 85] or mapping rules [5, 40, 56, 62, 87]. In
the former case, ��� is irst parsed into logical queries independent of the underlying database schema, which are
then converted into queries that can be executed on the target database [34]. On the contrary, rule-based methods
generally assume that there is a one-to-one correspondence between the words in ��� and a subset of database
keywords/entities [34]. Therefore, the NL2SQLmapping can be achieved by directly applying the syntactic parsing
and semantic entity mapping rules to ��� . Although both strategies have achieved signiicant improvement over
time, they have two intrinsic limitations. First, they require signiicant efort to create hand-crafted mapping rules
for translation [34]. Second, the coverage of these methods is limited to a deinite set of semantically tractable
natural language queries [34, 56].
The recent development of deep learning (DL) based methods aims to achieve lexible NL2SQL translation

through a data-driven approach [10, 28, 33, 47, 61, 95, 97]. From large-scale datasets, DL-based models learn to
interpret NL queries conditioned on a relational DB via SQL logic [47]. Most NL2SQL models use the encoder-
decoder architecture [47, 95, 97], where the encoder models the input��� into a sequence of hidden representations
along time steps. The decoder then maps the hidden representations into the corresponding SQL statement.
Recently, Transformer-based architecture [47, 82] and pre-training techniques [30, 65, 89] have become popular as
the backbone of NL2SQL encoders. At the same time, many decoders have been used to optimize SQL generation,
such as autoregressive bottom-up decoding [61] and the LSTM-based pointer-generator [47]. However, those

ACM Trans. Interact. Intell. Syst.
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DL-based models are usually “black-boxesž due to the lack of explainability [34]. The lack of transparency makes
it diicult for users to igure out how to ix the observed errors when using DL-based NL2SQL models.
The evaluation of these DL-based models is based mainly on objective benchmarks such as Spider [90] and

WikiSQL [97]. For example, Spider requires models to generalize well not only to unseen NL queries but also to
new database schemas, in order to encourage NL interfaces to adapt to cross-domain databases. The performance
of a model is evaluated using multiple measures, including component matching, exact matching, and execution
accuracy. However, these benchmarks only involve quantitative analysis of NL2SQL models, giving little clue
about what types of errors a model tends to fall into.

An aim of our work is to develop a taxonomy of error types of errors made by state-of-the-art NL2SQL models
and report the corresponding descriptive statistics to complement the quantitative benchmark with the qualitative
analysis of those NL2SQL models.

2.2 Detecting and repairing errors for NL2SQL

Natural language interfaces for NL2SQL face challenges in language ambiguity, underspeciication, and model
misunderstanding [18, 52]. Previous work has explored ways to support error detection and repair for NL2SQL
systems through human-AI collaboration. NL2SQL error detection methods can be mainly divided into categories
of natural language-explanation-based, visualization-based, and conversation-based approaches. NL2SQL error
repair methods consist mainly of direct manipulation and conversational error ixing approaches.

For error detection, a popular method is to explain the query and its answer in natural language [18, 69, 72, 77,
88]. For example, DIY [52] and STEPS [77] show step-by-step NL explanations and query results by applying
templates to subqueries, helping users understand SQL output in an incremental way; similarly, SOVITE [44]
allows users to ix agent breakdowns in understanding user instructions by revealing the agent’s current state of
understanding of the user’s intent and supporting direct manipulation for the user to repair the detected errors;
NaLIR [41] explains the mapping relations between entities in the input query and those in the database schema;
Ioannidis et al. [69] introduced a technique to describe structured database content and SQL translation textually
to support user sensemaking of the model output. Visualizations have also been widely used to explain a SQL
query and its execution [8, 9, 39, 51]. For example, QueryVis [39] produces diagrams of SQL queries to capture
their logical structures; QUEST [9] visualizes the connection between the matching entities from the input query
and their correspondences in the database schema; SQLVis [51] introduced visual query representations to help
SQL users understand the complex structure of SQL queries and verify their correctness.
Most of the previous work employed direct manipulation to repair and disambiguate queries. NaLIR [41],

DIY [52] and DataTone [25] allow users to modify the entity mappings through drop-downs; Eviza [66] and
Orko [71] enable users to modify quantitative values in queries through range sliders. In addition to direct
manipulation, several other prior interactionmechanisms enable users to give feedback to NL2SQLmodels through
dialogs in natural language. For example, MISP [88] maintains the state of the current parsing process and asks for
human feedback to improve SQL translation through human-AI conversations. Elgohary et al. [18, 19] investigated
how to enable users to correct NL2SQL parsing results with natural language feedback in conversation.

With the many error-handling mechanisms that have been proposed, there is a gap in evaluating how efective
and eicient these mechanisms are to address diferent types of NL2SQL errors and what speciic limitations they
have. These types of information are critical to inform the efective choice and design of NL2SQL error handling
mechanisms in diferent use scenarios and to inspire the use of ensemble mechanisms to handle diferent usage
contexts of NL2SQL. Our work bridges this gap by investigating these questions through controlled user studies,
whose indings could guide the future design of NL2SQL error handling systems.

ACM Trans. Interact. Intell. Syst.
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2.3 Error handling via human-AI collaboration

Handling errors made by AI models in human-AI collaboration faces many key challenges. First, many state-of-
the-art AI models lack transparency in their decision-making process, making it diicult for users to understand
exactly what leads to incorrect predictions [63]. Although there are some attempts to explain the state of the AI
model using methods such as heatmap [60, 98], search traces [92], and natural language explanations [13, 17],
they only allow users to peek at the AI model’s reasoning at certain stages instead of exposing the holistic states
of the model. Second, it is diicult for users to develop a correct mental model for complex AI models due to the
representational mismatch in which “humans can create a mental model in terms of features that are not identical
to those used by AI modelsž [7]. Lastly, error handling usually requires multiple turns of interactions [36, 44].
However, maintaining coherent multi-turn interactions between AI and humans is challenging [1]. It requires AI
to closely maintain and update the context history, evolve its contextual understanding, and behave appropriately
based on user’s timely responses [2, 3, 99].
Our work contributes to the knowledge of how users handle errors in their collaborations with NL2SQL

models by studying how users utilize existing error-handling mechanisms to inspect and ix errors made by
NL2SQL models and how they perceive the usefulness of these mechanisms. Our indings of user challenges
also echo the identiied challenges in human-AI collaborations in other domains (e.g., programming [76, 79, 93],
data annotation [26], QA generation [94], interactive task learning [43, 45]), showing that users need help
comprehending the state of AI models and developing a proper mental model in AI-based interactive data-centric
tools to understand and assess their recommendations.

3 AN ANALYSIS AND TAXONOMY OF NL2SQL ERRORS

In this section, we describe the development of the taxonomy of NL2SQL errors of four representative NL2SQL
models and the corresponding error analysis. The structure of this section is as follows. Section 3.1 introduces the
models we selected for analyzing the erroneous SQL queries. We also discussed the discrepancy in the worklow
of diferent models. Section 3.2 summarizes the methodology used for building the dataset; Section 3.3 explains
the axial and iterative coding procedure we used to derive the error taxonomy; Section 3.4 describes the developed
taxonomy of NL2SQL errors; Section 3.5 presents an analysis of erroneous queries in the dataset based on the
taxonomy.

3.1 Model selection

We selected four representative NL2SQL models from the oicial Spider leader board, the information of which is
shown in Table 1.

While most models generate the SQL query in a top-down decoding procedure, SmBop (M1) improves the speed
and accuracy by adopting a bottom-up structure. Speciically, it gradually combines smaller components to form
a syntactically larger SQL component. BRIDGE (M2) is a sequential architecture that models the dependencies
between natural language queries and relational databases. It combines a BERT-based [15] encoder with a
sequential pointer-generator for end-to-end cross-DB NL2SQL semantic parsing. In comparison, GAZP (M3)
combines a semantic parser with an utterance generator. When given a new database, it synthesizes data and
selects instances that are consistent with the schema to adapt an existing semantic parser to this new database.
DIN-SQL+GPT-4 (M4) has the best accuracy among all four models. It improves the performance of the large
language model (GPT-4 [55]) on text-to-SQL tasks by employing task decomposition, adaptive prompting, linking
schema to prompt, and self-correction. All these models employ diferent NL2SQL task-solving strategies at
diferent stages, including decoding (M1), encoding (M2), inetuning (M3), and task preprocessing (M4).

ACM Trans. Interact. Intell. Syst.
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Model Index Model Names Err. queries Retrained Acc. Original Acc.

M1 SmBop [61] 431 81.2% 71.1%
M2 BRIDGE [47] 853 62.7% 68.3%
M3 GAZP [96] 1062 53.6% 53.5%

M4 DIN-SQL+GPT-4 [58] 304 86.7% 85.3%

Table 1. Descriptive statistics and the accuracy of each model we reproduced

NL query SQL query

Easy What is the abbreviation
for airline ``JetBlue Airwaysž ?

SELECT Abbreviation FROM AIRLINES
WHERE Airline = ``JetBlue Airwaysž

Medium What are the codes of countries
where Spanish is spoken by the
largest percentage of people?

SELECT CountryCode , MAX(Percentage) FROM
countrylanguage WHERE language= ``Spanishž
GROUP BY CountryCode

Hard What are the irst names of the students
who live in Haiti permanently or
have the cell phone number 09700166582?

SELECT T1.irst_name FROM students AS T1
JOIN addresses AS t2 ON T1.permanent_address_id = T2.address_id
WHERE T2.country = ’haiti’ OR T1.cell_mobile_number = ’09700166582’

Extra

Hard

What is the series name and country of
all TV channels that are playing cartoons
directed by Ben Jones and cartoons
directed by Michael Chang?

SELECT T1.series_name , T1.country FROM TV_Channel AS T1
JOIN cartoon AS T2 ON T1.id = T2.Channel WHERE T2.directed_by =
’Michael Chang’ INTERSECT SELECT T1.series_name , T1.country
FROM TV_Channel AS T1 JOIN cartoon AS T2 ON T1.id = T2.Channel
WHERE T2.directed_by = ’Ben Jones’

Table 2. NL-SQL pairs with diferent dificulty levels in the Spider dataset

3.2 Erroneous queries dataset collection

We adopted the Spider [90] dataset to train and evaluate the models and to collect a set of erroneous SQL
queries for the taxonomy. Spider is the most popular benchmark to evaluate NL2SQL models with complex and
cross-domain semantic parsing problems. It consists of around 10,000 queries in natural language on multiple
databases across diferent domains (e.g., “soccerž, “collegež). In the original Spider dataset, the diiculty of the
queries is divided into four levels: “Easyž, “Mediumž, “Hardž, and “Extra Hardž, depending on the complexity of
their structures and the SQL keywords involved. We demonstrate an example NL-SQL pair for each diiculty
level in Table 2. In this work, we focus only on the irst three diiculty levels as state-of-the-art models have
signiicantly lower accuracy on the “extra hardž queries Ð the best model we reproduced, DIN-SQL+GPT-4, only
achieved less than 50% in accuracy, indicating that NL2SQL for “extra hardž queries remains less feasible at this
point.

Since the held-out test set in Spider is not publicly available, we created our own test set by re-splitting the public
training and development sets from Spider. The ratios of the three diiculty levels in the new training and testing
sets were close to those in the original training and developing sets. In addition, we ensured that there was no over-
lap in the databases used between our training and testing sets. Table 3 shows the distribution of our training and
test data compared to the original public Spider dataset. We re-trained model M1-M3 with their oicially released
code using our training set. Since M4 was using few-shot learning, we did not retrain this model separately. The
models used diferent core structures and showed close to SOTA performance at the time we conducted the study.

The erroneous queries are those that have diferent execution results from the correct ones (with values). The
queries generated by these models on the test set were manually analyzed to develop the taxonomy of SQL
generation errors. Table 1 shows the total number of erroneous queries generated by each model. The accuracy
of each model on our test set is close to the reported performance of these models on the private held-out test set,
indicating that our reproduction of these models are consistent with the original implementations.

ACM Trans. Interact. Intell. Syst.
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Easy Medium Hard Extra Total

Original
Train 1983 2999 1921 1755 8658
Dev 248 446 174 166 1034

Re-split
Train 1604 2363 1516 0 5483
Test 627 1082 579 0 2288

Table 3. Descriptive statistics of the original Spider dataset and our sampled dataset

3.3 The coding procedure

After curating the dataset of erroneous queries, we followed the established open, axial and iterative coding
process [4, 11, 37] to develop a taxonomy of NL2SQL errors. The detail of the process is as follows.

3.3.1 Step 1: Open coding. To begin with, we randomly sampled 40 erroneous SQL queries to develop the
preliminary taxonomy. Four authors with in-depth SQL knowledge performed open coding [4, 11, 37] on this
subset of erroneous SQL queries. They were instructed to code to answer the following questions: (1)What are the
errors in the generated SQL query in comparison to the ground truth? (2)What SQL component does each error reside
at? (3) Have all the errors in the incorrect SQL query been covered?. Once inishing the irst round of coding, the
coded query pairs (the generated query and the ground truth) were put line by line in a shared spreadsheet. The
annotators sat together to discuss the codes and reached a consensus on the preliminary version of the codebook.

3.3.2 Step 2: Iterative refinement of the codebook. After creating the preliminary codebook, four annotators
conducted iterative reinements of the established codes. Each iteration consisted of the following three steps.
First, the annotators coded a new sample batch of 40 unlabeled erroneous queries using the codebook from the last
iteration. If there is a new error not covered by the current codebook, annotators would write a short description
of it. Second, we computed the inter-rater reliability between coders [50] (Fleiss’ Kappa and Krippendorf’s
Alpha) at the end of each iteration. Lastly, annotators exchanged opinions about adding, merging, removing, or
reorganizing codes and updated the codebook accordingly. Annotators completed three reinement iterations
until the codebook became stable and the inter-rater reliability scores were substantial. At the end of the inal
reinement iteration, the Fleiss’ Kappa was 0.69 and the Krippendorf’s Alpha was 0.67.

3.3.3 Step 3: Coding the remaining dataset. We then proceeded to code the remaining dataset using the codebook
from the inal reinement iteration. Because the inter-rater reliability scores stabilized among annotators, two
annotators participated in this step. The Fleiss’ Kappa and Krippendorf’s Alpha of the full dataset annotation
between those two annotators were 0.76 and 0.78 respectively, indicating substantial agreement [4, 20, 35].

3.3.4 The annotation interface. We implemented an error annotation system to annotate the erroneous queries.
The front-end UI is shown in Figure 1. It consists of three components: (A): A query display section that presents
the natural language query, the corresponding ground truth, and the model-generated SQL query. (B): An error
annotation sectionwhere the annotator irst decidedwhich part(s) of the generated SQL is wrong by clicking on the
corresponding selection button. After that, the annotator was supposed to choose error types from the checkbox
below. If the error typewas not included, the system provided an input box to accept open feedback. The error types
would be updated after each batch of coding described in Section 3.3.2. (C): A results display section. The tables
involved in the pairs and the execution result were shown in this section to help annotators identify the error types.

3.4 The Taxonomy of NL2SQL Errors

Table 4 shows the inalized taxonomy of NL2SQL errors. Speciically, we categorized the error types along two
dimensions: (1) the syntactic dimension shows which parts of the SQL query an error occurs in, categorized by
SQL keywords such as WHERE and JOIN; (2) the semantic dimension indicates which aspects of the NL description

ACM Trans. Interact. Intell. Syst.
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Fig. 1. The user interface that we used for NL2SQL error annotation

that the model misunderstands, such as misunderstanding a value or the name of a table. For each type of error,
the uppercase letter refers to the syntactic category, and the lowercase letter refers to the semantic category. Note
that there may be multiple manifestations of a semantic error in a syntactic error category. For example, the table
error has two diferent forms in the “JOIN” clause, including “Miss a table to JOIN” (Ba1) and “JOIN the

wrong table” (Ba2). An erroneous query may also have multiple error types associated with it.

3.5 NL2SQL error analysis

Based on the error taxonomy, we further analyzed the erroneous queries to explore the following three questions:

RQ1 How are the erroneous queries distributed among diferent models? Do models tend to stumble on the
same queries or make mistakes on distinct queries? Furthermore, for those overlapping erroneous queries,
do models tend to make similar types of error on them or not?

RQ2 How do error types spread along the syntactic and semantic dimensions? How diferent are the distributions
of error types among the three models?

RQ3 How far are the erroneous queries from their corresponding ground truths?

3.5.1 The distribution of erroneous queries among models. Figure 2 shows the overlap of erroneous queries among
the best three models in a Venn diagram (DIN-SQL+GPT-4, SmBop, and BRIDGE). Each circle represents the
queries on which the model made errors. The size of each circle is proportional to the number of erroneous
queries of its corresponding model in the sampled dataset (Table 1).

Furthermore, we found that there were 129 queries appeared in all four models, we sampled three of them and
presented the queries and error types in Table 6. Additionally, we found 92.1% (280 out of 304) of DIN-SQL+GPT-
4’s; 82.4% (355 out of 431) of SmBop’s; 84.4% (720 out of 853) of BRIDGE’s; and 70.6% (750 out of 1062) of GAZP’s

ACM Trans. Interact. Intell. Syst.
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Error categories Error types SmBop BRIDGE GAZP
DIN-SQL+
GPT-4

Syntactic errors

A: WHERE error

Aa1: Use a wrong table in WHERE 21 68 73 10
Ab1: Use a wrong column in WHERE 19 36 23 12
Ac1: Redundant WHERE clause 14 16 27 13
Ac2: Missing WHERE clause 15 21 61 7
Ad1: Other wrong value in WHERE clause 51 52 91 18
Ad2: Value case error in WHERE clause 62 69 82 36
Ad3: Value plurality error in WHERE clause 8 6 16 0
Ad4: Value synonym error in WHERE clause 35 40 45 35
Ae1: Wrong comparator (<, >, =, !=, etc) 8 13 14 3
Ae2: Wrong boolean operator (AND, OR etc.) 4 15 9 3

B: JOIN error

Ba1: Miss a table to JOIN 35 106 101 15
Ba2: JOIN the wrong table 24 89 78 3
Bb1: Use a wrong column in JOIN 13 79 69 7
Bc1: Redudant JOIN clause 17 82 113 36

C: ORDER BY error

Cb1: Use a wrong column to sort 3 26 26 9
Cc1: Miss a ORDER BY clause 12 22 20 4
Cc2: Redundant sorting 3 1 3 0
Ce1: Wrong sorting direction 6 27 23 15

D: SELECT error

Da1: Use a wrong table in SELECT 59 117 106 26
Db1: Return a wrong column in SELECT 21 56 78 33
Db2: Return a redundant column in SELECT 10 19 36 13
Db3: Miss returning column(s) in SELECT 20 34 59 11
Df1: Use wrong aggretation function 7 43 11 9
Df2: Miss aggregation function 5 19 14 6

E: GROUP BY error
Eb1: Use a wrong column in GROUP BY 6 10 18 12
Ec1: Miss a GROUP BY clause in the SQL query 10 33 47 8
Ec2: Redudant GROUP BY clause 6 7 16 9

F: HAVING error
Fc1: Miss HAVING clause 1 5 12 1
Fc2: Redundant HAVING clause 0 2 6 1
Fe1: Wrong condition in HAVING 1 2 3 6

G: LIKE error Gc1: Miss LIKE clause 1 3 9 4
Ge1: Wrong LIKE condition 1 8 22 2

H: LIMIT error Hc1: Redudant LIMIT clause 1 2 6 0
Hc2: Miss LIMIT clause 0 1 3 1

I: INTERSECT error Ie1: Wrong INTERSECT condition 8 8 9 11

J: DISTINCT error Jc1 Miss a DISTINCT keyword 7 18 96 12
Jc2 Redundant DISTINCT keyword 4 15 0 11

K: EXCEPT error Kc1 Wrong EXCEPT clause 14 27 24 13
L: NOT error Lc1 Miss NOT keyword 7 9 7 0
M: UNION Me1 Wrong UNION condition 9 9 8 10

Semantic errors

a: Table error 97 279 274 53
b: Column error 81 237 251 94
c: Miss/redundant Clause/keyword error 107 250 432 101
d: Value error 153 162 230 82
e: Condition error 37 82 88 49
f: Aggregation function error 12 62 25 15

Table 4. The taxonomy of NL2SQL errors with the count of each error type for the models

incorrect queries also confounded other models, indicating that new models are making errors on a limited
number of new queries each time. The statistics are also presented in Table 5. The results imply that diferent
models tend to make errors on the same subset of queries in NL2SQL.

ACM Trans. Interact. Intell. Syst.
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Fig. 2. The overlap of erroneous queries generated by DIN-SQL+GPT-4, SmBop, and BRIDGE

Model Names Overlapped Queries Percentage

DIN-SQL+GPT-4 92.1%

SmBop 82.4%

BRIDGE 84.4%

GAZP 70.6%

Table 5. The percentage of erroneous queries for each model that also appeared in the other three models

������� ��� � � ������ =
|����−���+���−4 ∩ ������ ∩ ������� ∩ ����� |

|����−���+���−4 ∪ ������ ∪ ������� ∪ ����� |
(1)

To understand whether models make similar types of errors in those overlapped queries, for each query, we
measured the similarity of the syntactic and semantic error types respectively among the models. Noticeably,
there are multiple distance metrics such as Jaccard distance [38], Hamming distance, and Euclidean distance.
Hamming distance usually works for sets with the same length, while Euclidean distance measures the distance
between two points in an Euclidean space. In our case, these two diferent error sets are challenging to map to
the space. Thus, we choose the Jaccard distance as it can be adapted to sets of diferent lengths and explicitly
considers the diference of each error type in the set. The Jaccard coeicient is measured using Equation 1, where
�� means the set of error types that the model� made on the target query. For syntactic error types, 27.9% of
overlapped queries have a Jaccard coeicient of 0 among the four models, which implies that the models did
not all make the same syntactic error type in these queries. Regarding the semantic error types, 24.8% of these
queries have a Jaccard coeicient of 0. On the other hand, only 7.8% of the overlapped queries have the same
syntactic error type from the four models, and even fewer of them (6.2%) have the same semantic error type from
all four models. These results show that although the models tend to make errors in the same set of queries,
the types of errors in each query tend to be diferent. We provide three examples in Table 6 to illustrate the
similarity and disparity of error types in the same queries.

3.5.2 Error frequency. In this section, we investigate the distribution of error types among models. Speciically,
we report the following three measures for each model:
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1 2 3

NL query
How many games are
played for all students?

What are the diferent
membership levels?

Find the package choice and series name of the
TV channel that has high deinition TV.

Correct

query

SELECT sum(gamesplayed)
FROM Sportsinfo

SELECT count(DISTINCT level)
FROM member

SELECT package_option, series_name FROM
TV_Channel WHERE high_deinition_TV = “yesž

Model Generated query
Error

types
Generated query

Error

types
Generated query

Error

types

DIN-SQL
+GPT-4

SELECT COUNT(GameID)
FROM Plays_Games

Da1, Db1,
Df1

SELECT DISTINCT
Level FROM member

Df2
SELECT package_option, series_name

FROM TV_Channel WHERE
high_deinition_TV = “Yesž

Ad2

SmBop
SELECT COUNT( * ) , stuid

FROM plays_games
Da1, Db1,
Db2, Df1

SELECT Level
FROM member

Df2, Jc1
SELECT package_option, series_name

FROM TV_Channel WHERE
high_deinition_TV = 1

Ad1

BRIDGE
SELECT COUNT(*)
FROM Plays_Games

Da1, Db1,
Df1

SELECT DISTINCT
level FROM member

Df2
SELECT package_option, series_name

FROM TV_Channel WHERE
high_deinition_TV = “tž

Ad4

GAZP
SELECT count ( * )
FROM Plays_Games

Da1, Db1,
Df1

SELECT level
FROM member

Df2, Jc1
SELECT package_option, series_name

FROM TV_Channel WHERE
high_deinition_TV = “deinitionž

Ad1

Table 6. Sampled erroneous NL-SQL pairs and their error types

(1) Syntactic error rate (������� ): Given the model� and a syntactic error type � , ������� is the number
of queries in which the model� made the syntactic error � divided by the number of ground truth queries
in the entire development set that has the corresponding syntax. (Table 7). It tells us how likely a syntactical
part of a query will produce errors.

(2) Syntactic error percentage (distribution) (������� ): Given the model� and a syntactic error type � ,
������� is the number of queries in which the model� made the syntactic error � divided by the total
number of erroneous queries made by the model�. (Table 7). It measures the percentage of queries that
contain a speciic type of syntactic error among all erroneous queries.

(3) Semantic error percentage (distribution) (������� ): Given the model� and the semantic error rate � ,
������� is the number of queries in which the model� made the semantic error � divided by the total
number of erroneous queries made by the model�. (Table 8). It measures the percentage of queries that
contain a speciic type of semantic error among all erroneous queries.

As shown in Table 7, the distributions of syntactic error type are similar among all four models. Note that a
model can produce a query with multiple types of errors. Notably, the error percentages of WHERE, JOIN, and
SELECT are signiicantly higher than that of other syntactic error types for all the models. However, comparing it
with the syntactic error rate, we see that a higher frequency of errors (in all queries) does not equate to a higher
error rate when a speciic type of keyword is encountered. For example, although UNION errors only account
for fewer than 4% of erroneous queries among all models, it has an error rate of more than 50% (i.e., when the
correct query should contain a UNION clause, the model has a high probability of making errors there). The top 5
syntactic parts that have the highest error rates are shown in Table 9.
Compared to syntactic errors, the distribution of semantic errors is more varied between models (Figure 8).

We found that d: Value error and a: Table error are the most frequent error types for SmBop (35.5%) and
BRIDGE (32.71%), respectively. While c: Miss/redundant clause/keyword error appeared most frequently
in GAZP (40.68%) and DIN-SQL+GPT-4 (33.22%). It indicates that the semantic challenges of the investigated
NL2SQL models are more varied than the syntactic challenges they faced.

3.5.3 Distance between erroneous and ground truth queries. Lastly, we used Levenshtein distance to measure the
distance between erroneous and ground truth queries. The Levenshtein distance between two queries is deined
as the minimum number of word-level (split by space) edits (insertions, deletions, or substitutions) required
to transform the model-generated query into the ground truth query. Before computing the distance, we irst
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Error Percentage Error Rate

Error type SmBop BRIDGE GAZP
DIN-SQL+
GPT-4

SmBop BRIDGE GAZP
DIN-SQL+
GPT-4

A: WHERE error 47.80% 35.05% 30.89% 42.43% 18.86% 27.38% 30.04% 11.81%
B: JOIN error 17.87% 28.14% 31.83% 19.74% 10.13% 31.58% 44.47% 7.89%

C: ORDER BY error 4.64% 7.39% 5.74% 9.87% 4.58% 14.42% 13.96% 6.86%
D: SELECT error 23.20% 25.79% 25.80% 30.92% 4.37% 9.62% 11.98% 4.11%

E: GROUP BY error 5.10% 5.86% 7.63% 9.54% 4.50% 10.22% 16.56% 5.93%
F: HAVING error 0.46% 1.06% 1.98% 2.63% 1.44% 6.47% 15.11% 5.76%
G: LIKE error 0.46% 1.29% 2.92% 1.97% 2.86% 15.71% 44.29% 8.57%
H: LIMIT error 0.23% 0.35% 0.85% 0.33% 0.41% 1.24% 3.73% 0.41%

I: INTERSECT error 1.86% 0.94% 0.85% 3.62% 18.60% 18.60% 20.93% 25.58%
J: DISTINCT error 2.55% 3.87% 9.04% 7.57% 4.78% 14.35% 41.74% 1.74%
K: EXCEPT error 3.25% 3.17% 2.26% 4.28% 20.29% 39.13% 34.78% 18.84%
L: NOT error 1.62% 1.06% 0.66% 0.00% 13.46% 17.31% 13.46% 0.00%

M: UNION error 2.09% 1.06% 0.75% 3.29% 56.25% 56.25% 50.00% 62.5%

Table 7. The error percentage and error rate of each syntactic error type

Error type SmBop BRIDGE GAZP
DIN-SQL

+GPT-4

a: Table error 22.51% 32.71% 25.80% 17.43%
b: Column error 18.79% 27.78% 23.63% 30.92%

c: Miss/redundant Clause/keyword error 24.83% 29.31% 40.68% 33.22%
d: Value error 35.50% 18.99% 21.66% 26.97%

e: Condition error 8.58% 9.61% 8.29% 16.12%
f: Aggregation function error 2.78% 7.27% 2.35% 4.93%

Table 8. The error percentage of each semantic error type

Model Top 1 Top 2 Top 3 Top 4 Top 5

SmBop UNION 56.25% EXCEPT 20.29% WHERE 18.86% INTERSECT 18.60% NOT 13.46%
BRIDGE UNION 56.25% EXCEPT 39.13% JOIN 31.58% WHERE 27.38% INTERSECT 18.6%
GAZP UNION 50.00% JOIN 44.47% LIKE 44.29% DISTINCT 41.74% EXCEPT 34.78%

DIN-SQL+GPT-4 UNION 62.5% INTERSECT 25.58% EXCEPT 18.84% WHERE 11.81% LIKE 8.57%

Table 9. The top 5 error-prone syntactic parts of a SQL query for the selected models

pre-process the ground truth and predicted queries for each pair to unify the SQL format. Speciically, we i):
ignore the diferences in the upper or lower case letters except for values; ii) extract the table names and the
alias for each column used in the query and preix the column names with the identiied table names. Noticeably,
there may be other cases where the predicted query does not need to be revised to exactly the form of the ground
truth query in order to get the correct result; therefore, the Levenshtein distances we obtained may be larger
than the actual ones.

Figure 3 shows the distribution of the Levenshtein distances of errors made by each model. It is worth noting
that all four distributions have a long tail. Speciically, by looking at the Levenshtein distance in three diferent
groups: 0ś5, 6Ð10, and more than 10; we found that a large portion of erroneous SQL queries for all four models
can be ixed in a small number of edits. Especially for the best model we reproduced, DIN-SQL+GPT-4, 19.1%
(58/304) of the erroneous queries can be ixed in one step. In particular, 19.6% (208/1062) queries in GAZP only
need changes in one token; the percentage of erroneous queries requiring only changes in one token for BRIDGE
and SmBop is 3.9% (34/853) and 10.7% (46/431), respectively.
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Fig. 3. The distribution of Levenshtein distances between erroneous queries and ground truth queries for each model

4 ANALYSIS ON NL2SQL HUMAN-MODEL ATTENTION ALIGNMENT

After understanding the error types and distribution in NL2SQL, we aim to further investigate the possible cause
of SQL errors. Previous research [6, 32, 46] has shown that the discrepancy between model attention and human
attention is correlated with poor performance in code summarization, machine translation, and visual feature
representation. We hypothesize that such misalignment between model attention and human attention is also
a source of error in NL2SQL. In other words, NL2SQL models return incorrect columns or tables in part because
they do not pay attention to words that humans pay attention to. However, the lack of empirical research limits
our understanding in this area.

To investigate whether and to what extent SQL errors derive from such attention misalignment, we compare
human-labeled attention with a representative model’s attention on NL queries.

4.1 Data preparation

4.1.1 Diferent atention calculation methods. There are diferent methods to obtain the model’s attention. For
example, some work [12, 22, 42, 80] leveraged the self-attention mechanism of transformer [81] to obtain attention,
while some work [14, 67, 70, 74] used the gradients of the model predictions with respect to the input features to
calculate the model’s attention.
Perturbation-based methods follow a two-step process: they irst mutate the input and then calculate the

model’s attention based on the diferences in the output. For instance, LIME [59] generates a local explanation
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by approximating the speciic model predictions using a simpler model, such as a linear classiier. SHAP [49]
improves on LIME by perturbing the input based on game theory and using the Shapely value to estimate the
importance of diferent tokens. However, a limitation of both methods is that they often require a large number
of perturbed samples to ensure an accurate estimation. Furthermore, LIME and SHAP only mutate an input by
deleting tokens, which may signiicantly alter the meaning or structure of the input. To address this limitation,
more recent perturbation-based methods opt to replace tokens with similar or semantically related tokens in the
context [48, 86]. These methods often utilize a masked language model such as BERT [16] to predict similar or
semantically related tokens to replace existing tokens in an input. In this study, we selected a perturbation-based
method optimized by BERT. The reasons for this choice will be explained in the following paragraphs.

4.1.2 NL2SQL model selection. We selected SmBoP [61], which achieves the second-highest performance among
the models we used in the previous study. Although DIN-SQL + GPT-4 [58] achieves the highest performance,
GPT-4 is not open-source, therefore, we cannot directly calculate its attention based on self-attention or gradient.
Additionally, by using the perturbation-based method, the GPT-4 API has to be called millions of times, which is
not practical and afordable.

4.1.3 Atention calculation method selection. Methods leveraging either self-attention or gradient are not suitable
for a model with multiple components other than a transformer [81] since attention or gradient does not represent
the attention for the entire model. The decoding process of SmBoP starts by generating SQL components
and gradually combines them from the bottom up to create a complete SQL statement. This process involves
contextualization based on the transformer’s self-attention mechanism and the use of predeined rules to ilter
out invalid queries.

Due to the complexity of SmBoP architecture, the attention in transformer headers or simply using gradients
cannot accurately represent the attention of the entire model. Therefore, we choose the perturbation-based
method, which regards the SmBoP model as a black box without considering the inner details of its architecture.

4.2 Human atention labeling

To obtain human attention on NL2SQL tasks, two annotators, who are proicient in SQL, conducted iterative
reinements of attention annotation. We irst randomly sampled 200 tasks from the Spider dataset, where 140
tasks can be correctly solved by the experiment model (SmBoP), and 60 tasks on which the model makes errors.
We intentionally balanced the sampled tasks according to the performance of SmBoP (69.5% on the Spider test
set).

Each iteration consisted of the following three steps. First, two annotators separately annotated a new sample
batch of 25 tasks. For each task, the annotators reviewed the natural language (NL) question and the ground truth
SQL query. Then each annotator individually identiied important NL words (those that contribute to the query)
and marked their attention weight as 1 while marking the attention weight of the remaining unimportant words
(e.g., all, the, of) as 0. Second, we computed the inter-rater reliability between annotators [50] (Fleiss’ Kappa and
Krippendorf’s Alpha) at the end of each iteration. Lastly, annotators discussed how they judge the importance
of a certain word. Annotators completed three reinement iterations until the human-labeled attention became
stable and the inter-rater reliability scores were substantial. At the end of the inal reinement iteration, Fleiss’
Kappa was 0.67 and Krippendorf’s Alpha was 0.58.

4.3 Measuring atention alignment between human and model

We measure the alignment between the attention of the models and the annotators using the keyword coverage
rate. Speciically, we select the Top � model-focused words with the highest attention as����� , where � equals
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the number of keywords selected by human annotators. Then we calculate the percentage of human-labeled
words����ℎ covered in����� , as shown in Equation 2.

���� =
|����� ∩����ℎ |

|����ℎ |
(2)

Nevertheless, the attention scores calculated by this method cannot be directly compared to words annotated
by human labelers. This is because human labelers annotate attention on each individual word, while machine
attention is calculated and distributed on speciic tokenization of the model. For example, the word “applež can
be tokenized into two tokens: “apž and “plež through byte pair encoding. To bridge the gap, we developed a
method to map model tokens back to individual words and recalculate the attention distribution. Suppose an input
text includes � words {�1,�2, ...,��}, while the model’s tokenizer splits the text into � tokens {�1, �2, ..., ��}.
We calculate the model’s attention on �th word �� as the sum of all tokens that overlap with �� , as shown in
Equation 4.

�����������
=

︁

� �∩��≠∅

���������� � (3)

4.4 Results

In this section, we aim to answer the following research questions:

RQ1 To what extent model attention is aligned with human attention?
RQ2 Can the attention misalignment explain the errorous queries generated by NL2SQL models?
RQ3 Which error types are highly related to the attention misalignment?

In our 200 sampled tasks from the Spider dataset, the average number of words in the NL queries is 12.
Accordingly, we calculate the Keyword Coverage Rate by experimenting with diferent � (i.e., the top � words
with the highest attention to be considered in the calculation) from 1 to 20. Since the value of � may exceed the
number of words in the NL query, the actual number of words considered is equal to the minimum of � and the
number of words in the NL query.

K 1 2 3 4 5 6 7 8 9 10

Alignment 0.138 0.231 0.302 0.368 0.433 0.491 0.545 0.601 0.649 0.698

K 11 12 13 14 15 16 17 18 19 20

Alignment 0.740 0.776 0.804 0.832 0.851 0.868 0.880 0.888 0.894 0.898

Table 10. Average Keyword Coverage Rate for all 200 tasks

F1: The model’s atention partially aligns with human atention, which is consistent with the model’s
performance. Table 10 shows the average Keyword Coverage Rate for all 200 tasks in diferent settings of � . For
example, when considering the top 12 words (the average number of words), there is an overlap of around 77.6%
between human-focused and model-focused words. This result is consistent with the performance of SmBoP,
which achieves 70% accuracy on the sampled dataset.

F2: Atention alignment is higher when the model correctly solves the task, suggesting that SQL errors
are correlated with atention misalignment. To examine the relationship between attention alignment and the
model’s performance, we compare the Keyword Coverage Rate of correctly solved tasks with that of incorrectly
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Fig. 4. The distribution of alignment for correctly and incorrectly solved tasks considering diferent numbers of keywords.

solved tasks. Figure 4 shows the average keyword coverage rate with diferent � values for correct and incorrect
queries generated by SmBoP. When SmBoP generates a correct SQL query, the attention alignment is signiicantly
higher than when it generates an erroneous SQL for all � values, with all �-values being less than 0.05.

Take � = 6 (half of the number of words) as an example, Figure 5 shows the comparison of attention alignment
distributions between correctly and incorrectly generated queries. Each distribution approximately follows a
Gaussian distribution. However, the mean of the distribution for erroneous queries is signiicantly lower than
that of correct queries, with a �-value of 1.5� − 4. Furthermore, when generated queries are correct, all the rates
are no more than 0.67, suggesting that a low attention alignment contributes to generating an erroneous SQL.

F3: Atention misalignment is not speciic to a certain error type. To further investigate which types of
errors are more correlated with attention misalignment, we labeled the error types of all 40 incorrectly solved
tasks using the same procedure discussed in Section 3.3. Next, we calculated the average keyword coverage rate
associated with each type of error. Speciically, for a certain error type, we summed up the attention alignment of
all tasks that included that error. Then, we divided the summed attention alignment score by the number of tasks
that included this error, as shown in Equation 2.

������� =

∑

�� ∈���� �
��������� �

�

�{task� | task� contains error �� }
�

�

(4)

Table 11 shows the average alignment for each type of error. The results indicate no signiicant diference in
attention alignment across diferent types of error.
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Fig. 5. A comparison of atention alignment between correctly and incorrectly solved tasks.

Table 11. Average atention alignment for diferent types of error.

Syntactic error type � � � � � � �

Attention alignment 0.26 0.32 0.22 0.30 0.25 0.27 0.34

Syntactic error type � � � � � �

Attention alignment 0.19 0.28 0.33 0.24 0.21 0.26

5 THE USER STUDY OF INTERACTIVE ERROR DISCOVERY & REPAIR MECHANISMS

In the past few years, we have seen a growing interest in interactive mechanisms for users to detect and repair
NL2SQL errors [9, 29, 39, 51, 52, 84, 88], regardless of users’ domain expertise of using SQL language. To understand
the performance and usage of these mechanisms by users, we conducted a controlled user study to examine the
efectiveness of diferent error discovery and repair mechanisms for NL2SQL2. Speciically, we investigated the
following research questions.

2The protocol of the study has been reviewed and approved by the IRB at our institution.
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Condition Error Discovery and Repair Mechanisms

Baseline Direct SQL query editing
Exp. Cond. #1 Step-by-step SQL query explanation & NL-SQL entity mapping (DIY [52])

Exp. Cond. #2 Graph-based SQL query visualization (SQLViz [51])
Exp. Cond. #3 Conversational dialog system (MISP [88])

Table 12. The list of conditions used in the user study

RQ1. How efective and eicient are the diferent error-handling mechanisms and interaction strategies in
NL2SQL?

RQ2. What are the user preferences and perceptions of diferent mechanisms and strategies?
RQ3. What are the gaps between the capabilities of existing approaches and user needs?

5.1 Experiment conditions

In this study, we used four conditions shown in Table 12. In the baseline condition, no interactive support was
provided for error discovery and repair. Users had to examine the correctness of a generated SQL query by
directly checking the query result and manually editing a generated SQL query to ix an error.

In addition to the baseline, we selected three experimental conditions based on three representative approaches
for error discovery and repair. The irst experimental condition exempliies an explanation- and example-based

approach (DIY [52]) that displays intermediate results by decomposing a long SQL query into shorter queries and
generating natural language explanations for each step. Meanwhile, it allows users to ix the mapping between
words in the NL description and their corresponding entities in the generated SQL query from a drop-down
menu. The second experimental condition uses an explanation-based visualization approach (SQLVis [51]).
The technique uses a graph-based visualization for the generated SQL query to illustrate the explicit and implicit
relationship among diferent SQL components such as the selected columns, tables, primary and foreign keys.
The third experimental condition exempliies a conversational dialog approach (MISP [88]). It allows users
to correct an erroneous SQL query through multiple rounds of conversation in natural language (Table 12). We
replicated the core functionalities of the DIY mechanism used in experimental condition #1 as described in the
paper [52] because the oicial source code was not publicly released. For experimental condition #2, we used
the oicial implementation3 provided by the authors. For the dialog system under experimental condition #3, we
implemented an interactive widget based on the open-sourced command-line tool and an interactive graphical
user interface based on the React-Chatbot-Kitğ for the study.

5.2 Participants

We recruited 26 participants from the campus community of a private university in the midwest of the United
States through mailing lists and social media. Participants included 15 men and 11 women aged 20 to 30 years.
Nine participants were novice SQL users who had either no experience in using SQL or had seen SQL queries
before but were not familiar with the syntax. 10 participants were intermediate SQL users who had either taken an
introductory database course or understood the SQL syntax. The remaining 7 were experienced users who were
familiar with SQL queries or had signiicant experience working with SQL. Each participant was compensated
with $15 USD for their time.

3https://github.com/Giraphne/sqlvis
ğhttps://www.npmjs.com/package/react-chatbot-kit
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5.3 Study procedure

In our study, each participant experienced the four conditions described in Section 5.1. As the goal of this study
is to investigate the error discovery and repair behavior of users, the example SQL queries for each participant
were randomly selected from the dataset of incorrect queries generated by the three NL2SQL models used in
the error analysis study. Each query that a participant encountered was also randomly assigned to one of the
experimental conditions or the baseline condition.
To facilitate the user experiment, we implemented a web application that can automatically select SQL tasks

and assign conditions to study participants. After inishing one SQL query, users can click the “Nextž button on
the application, and it will randomly select the next query and assign a condition to it. Both the query assignment
and the condition assignment were randomized. For each query, the web application renders the task description,
the database and its tables, and the assigned error-handling mechanisms.

Each experiment session began with the informed consent process. Then, each participant watched a tutorial
video about how to interact with the system to solve an SQL task and ix NL2SQL errors under diferent conditions.
Then, each participant was given a total of 45 minutes to solve as many SQL tasks as possible. On average, each
participant completed 22.0 SQL tasks in 45 minutes (5.5 in each condition). After each experiment session, the
participant completed a post-study questionnaire. This questionnaire asked participants to rate their overall
experience, the usefulness of interactive tool support under diferent conditions, and their preferences in Likert
scale questions. We ended each experiment session with a 10-minute semi-structured interview. In the interview,
we asked follow-up questions about their responses to the post-study questionnaire, if they encountered any
diiculties with interaction mechanisms under the conditions, and which parts they found useful. We also asked
participants about the general worklow as they approached the task and the features they wished they had when
handling NL2SQL errors. All user study sessions were video recorded with the consent of the participants.

Following established open coding methods [11, 37], an author conducted a thematic analysis of the interview
transcripts to identify common themes about user experiences and challenges they encountered while using the
diferent error handling mechanisms, as well as their suggestions for new features. Speciically, the coder went
through and coded the transcripts of the interview sessions using an inductive approach. For user quotes that did
not include straightforward key terms, the coder assigned researcher-denoted concepts as the code.

5.4 Data collection

For each SQL task, we collected three types of data from the participant: (1) the updated SQL query after their
repair; (2) the starting and ending time; (3) the user’s interaction log with the error handling mechanism (e.g.,
clicking to view the sampled table, opening the drop-down menu, interacting with the chatbot).

We cleaned up the data from the participants through the following steps. First, we iltered out the queries that
are skipped by the participants (i.e., the user clicking on “Nextž without making any changes to the query), which
consist of less than 10% of the total data. Second, if the participant did not utilize the interaction mechanism
associated with the experimental condition at all (e.g., the user inspected the query without using any assistance
and modiied the query manually), the task was deemed to be solved using the baseline method.

5.5 Results

In this section, we report the key indings on the eiciency, efectiveness, and usability of diferent error handling
mechanisms and their user experiences. For each condition in a statistical test, the data is sampled evenly and
randomly.

F1: The error handling mechanisms do not signiicantly improve the accuracy of ixing erroneous
SQL queries. To start with, we conducted a one-way ANOVA test (�=0.05) among tasks that used diferent
error handling mechanisms. The p-value for the accuracy was 0.82, indicating that there were no signiicant

ACM Trans. Interact. Intell. Syst.



20 • Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, and Toby Jia-Jun Li

Conditions Avg. Acc. (� = 0.56) SD (� = 0.50) Avg. ToC (� = 116.7) SD (� = 89.6)

B1 0.55 0.48 109.7 95.8

C1 0.56 0.51 110.9 101.0

C2 0.60 0.50 115.9 96.5

C3 0.53 0.51 128.5 61.7

Table 13. The average accuracy and ToC (in seconds) for diferent conditions

diferences between the diferent error handling methods. The average accuracy and standard deviation among
the participants are shown in Table 13.
We then analyzed the efect of diferent mechanisms on the accuracy of ixing speciic error types, including

ive common syntactic error types (A: WHERE error; B: JOIN error; C: ORDER BY error; D: SELECT

error; E: GROUP BY error, as well as six semantic errors shown in Table 7. Using the same statistical test, we
found that the p-values for all types of error were higher than the 0.05 threshold, indicating that there were no
signiicant diferences in accuracy when the user used diferent error-handling mechanisms (Table 14).

Syntactic types Semantic types

A B C D E a b c d e f

B1 0.42 0.40 0.38 0.67 0.29 0.40 0.58 0.52 0.45 0.32 0.25
C1 0.40 0.44 0.27 0.56 0.24 0.42 0.58 0.53 0.32 0.42 0.28
C2 0.40 0.42 0.31 0.60 0.29 0.30 0.53 0.42 0.28 0.32 0.32
C3 0.62 0.33 0.31 0.60 0.38 0.33 0.57 0.52 0.28 0.27 0.22

Avg. Acc. 0.46 0.40 0.32 0.61 0.30 0.36 0.57 0.50 0.33 0.33 0.27
SD 0.50 0.49 0.47 0.49 0.46 0.48 0.50 0.50 0.47 0.47 0.44

p-value 0.10 0.73 0.73 0.76 0.58 0.51 0.94 0.57 0.17 0.37 0.64

Table 14. The accuracy of error handling for diferent types of errors under each condition.

Furthermore, we found that diferent error-handling mechanisms did not signiicantly inluence the accuracy
of SQL query error handling at various diiculty levels (Table 15). These indings suggest that existing interaction
mechanisms are not very efective for handling NL2SQL errors that state-of-the-art deep learning NL2SQL models
make on complex datasets like Spider. We further discuss the reasons behind these results and their implications
in the rest of Section 5.5 and Section 6.

Diiculty levels

Easy Medium Hard

B1 0.64 0.64 0.21
C1 0.71 0.64 0.36
C2 0.79 0.71 0.36
C3 0.79 0.50 0.29

Avg. Acc 0.73 0.63 0.30
SD 0.45 0.49 0.46

p-value 0.81 0.71 0.83

Table 15. The error-handling of diferent dificulty levels under each condition
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F2: The error handling mechanisms do not signiicantly impact the overall time of completion. To
study the impact of diferent error handling mechanisms on time usage, we analyzed the time of completion
(ToC) of the query that was solved correctly by the participants. We used the same ANOVA test as applied in the
previous analysis to test the mean diference among ToC using various error handling mechanisms (Table 13), no
signiicant signiicance was found among the groups (� = 0.52).
Similarly, we analyzed the impact of diferent error-handling mechanisms on the selected error types. In

general, the baseline method was more eicient in solving a task, while the conversational dialog system took
more time compared with other methods. The results are shown in Table 16.
Additionally, the results of experiments on SQL queries of various levels of diiculty revealed diferences

among the error-handling mechanisms tested in the case of easy queries (� = 0.04). Speciically, direct editing
was found to be the fastest method when the query was easy, followed by the explanation and example-based
approach (C1), the explanation-based visualization approach (C2), and the conversational dialog system (C3).

Syntactic types Semantic types

A B C D E a b c d e f

B1 112.0 98.5 97.5 109.7 109.6 104.0 93.8 116.0 130.0 121.7 103.0
C1 103.3 103.8 91.1 104.6 101.7 96.1 103.9 110.1 107.0 97.9 83.4
C2 117.9 108.2 86.2 96.8 93.0 99.5 119.0 129.7 108.7 105.2 95.0
C3 129.2 110.3 123.6 125.8 133.8 118.4 125.0 148.6 116.2 125.6 125.0

Avg. ToC 115.6 105.2 99.6 109.2 109.5 104.5 110.4 126.1 115.5 106.3 101.6
SD 33.2 68.8 48.5 45.0 73.1 53.3 37.5 77.2 73.6 49.1 59.3

p-value 0.87 0.99 0.39 0.60 0.70 0.82 0.24 0.71 0.91 0.17 0.48

Table 16. The average ToC of diferent error types under each condition.

Diiculty levels

Easy* Medium Hard

B1 31.8 124.4 133.6
C1 55.8 110.4 154.2
C2 79.0 110.5 199.1
C3 95.7 137.7 125.3

Avg. ToC 65.6 120.7 153.1
SD 50.9 96.2 97.7

p-value 0.04 0.60 0.39

Table 17. The average ToC of diferent dificulty levels under each condition. *statistically significant diference (� < 0.05)

F3: Users perform beter on error types with fewer variants. We analyzed the impact of error types on task
accuracy and ToC, and reported the results in Table 18. The results revealed that among the syntactic error types,
A: WHERE errors and E: GROUP BY errors had high accuracy, while for semantic error types, d: Value error

and e: Condition error had high accuracy. As shown in the error taxonomy (Table 4), value errors occur
only in the WHERE clauses, and those errors usually require fewer steps to ix and have little relationship with
the other syntactic parts in an SQL query. Similarly, condition errors such as wrong sorting directions and
wrong boolean operator (AND, OR, etc.) are relatively independent components in a query. The better user
performance on those error types may indicate that users face challenges in handling semantically complicated
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errors, such as joining tables and selecting columns from multiple tables, but are more successful in discovering
and repairing error types where the error is more local (i.e., with little interdependency with other parts of the
query). This conclusion is also evidenced in the user interview, which we will analyze in the following section.

Syntactic types Avg. Acc. (� = 0.53) SD (� = 0.50) Avg. ToC (� = 128.8) SD (� = 91.4)

A 0.56 0.51 132.3 105.5
B 0.48 0.50 147.2 90.4
C 0.53 0.51 128.2 75.6
D 0.53 0.47 111.5 55.5
E 0.55 0.51 125.1 72.4

Semantic types Avg. Acc. (� = 0.54) SD (� = 0.50) Avg. ToC (� = 123.1) (N=26) SD (� = 80.53)

a 0.47 0.49 123.0 67.4
b 0.54 0.51 123.3 68.2
c 0.50 0.51 128.7 68.7
d 0.61 0.47 118.1 96.5
e 0.60 0.49 116.7 83.2
f 0.51 0.51 128.1 66.8

Table 18. The average accuracy and ToC (in seconds) for diferent error types.

F4: The explanation- and example-based methods are more useful for non-expert users. When partic-
ipants were asked to rate their preferences among the diferent interaction mechanisms (shown in Table 19), we
found that the explanation- and example-based approach (C1) is the most preferred, while the explanation-based
visualization approach (C2) was rated similarly to the baseline method (B1). In contrast, the conversational dialog
system (C3) was generally rated as less useful than the others.

Most useful 2nd most useful 3rd most useful least useful

B1 7 4 9 6

C1 13 10 3 0

C2 5 8 9 4

C3 1 4 5 16

Table 19. The participants’ ranked preferences for diferent error handling mechanisms

We found that the user’s level of expertise signiicantly impacts their adoption rate of diferent error-handling
mechanisms. The adoption rate measures when a mechanism was available, and how likely that a user will use
the mechanism (instead of just using the baseline method) to handle the error. We calculated the adoption rate
for each condition (C1, C2, and C3) for diferent levels of expertise by dividing the number of SQL queries in
which the participant used the provided error-handling mechanism by the total number of queries provided with
the corresponding mechanism in the participant’s study session. The result is shown in Table 20.
The primary factor contributing to the lower level of interest in using error handling mechanisms among

expert participants under the experimental conditions was their ability to eiciently identify and repair errors
independently. For example, P2 stated that łIt (the step-by-step execution function in C1) is very redundant and
time-consuming to break down the SQL queries and execute the sub-queries, since most errors can be found at irst
glance.ž Another reason why expert users were less interested in using the error handling mechanisms was
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Expertise levels C1 (� = 0.74) C2 (� = 0.74) C3 (� = 0.41)
Expert 0.53 0.43 0.41

Intermediate 0.84 0.90 0.44
Novice 0.86 0.88 0.38

Table 20. The adoption rate of each mechanism among diferent expertise levels

that they were not conident in the intermediate results they provided. P3, for example, noted that łThough the
chatbot is capable of revising the erroneous SQL queries, I found it sometimes gives an incorrect answer and provides
no additional clues for me to validate the new query.ž Therefore, several expert participants chose to repair the
original SQL query instead of validating and repairing the newly generated query.

The study also showed that the conversational dialog system (C3) was the least preferred mechanism among
users at all levels of expertise. One reason for this is the relatively low accuracy of the model in recognizing user
intents from the dialog and automatically repairing the errors in the query. For example, P3 stated that łThough it
sometimes predicts the correct query, for most of the times, the prediction is still erroneous.ž In addition, the chatbot
did not provide explanations for its suggestions, so users had to spend signiicant efort to validate and repair the
newly generated SQL queries. Furthermore, while the chatbot allowed manual input from users to intervene in
the prediction process, such as pointing out erroneous parts and providing correct answers, it often introduced
new errors while predicting the SQL. As noted by P7: łIn one example, when I asked the chatbot to change the
column name that was in SELECT, it somehow changes the column in JOIN as well.ž As a result, many users quickly
became frustrated after using it for a few SQL queries.

F5: The explanation- and example-based methods are more efective in helping users identify errors in
the SQL query than in repairing errors. In the post-study questionnaire, we asked participants to evaluate the
usefulness of each condition in terms of its ability to help (1) identify and (2) repair errors, respectively (Fig. 6).
The results indicate that most of the participants found C1 to be efective in identifying incorrect parts of the
SQL query, while half of them thought it was not useful for repairing errors. Meanwhile, a notable proportion
of participants (12 out of 26) airmed C2’s efectiveness in identifying the errors, but it was helpful for repairing
the errors. In terms of C3, a signiicant number of participants (16 and 18) had a negative perception of its
efectiveness in both identifying and repairing errors within the SQL query.

Furthermore, we learned that the recursive natural language explanations might help reduce the understanding
barrier for a long and syntactic-complicated SQL query. For example, P8 stated that łBy looking at the shorter
sentences irst at the beginning, I could inally understand the meaning that the original long sentence were trying
to convey.ž P17 also mentioned that: łThose shorter sentences usually did not have complex grammatical structures
and confusing inter-table relationships, so that the problems were easier to be spotted.ž Additionally, executing the
subquery and displaying the results were deemed helpful for localizing the erroneous parts in the original SQL
query. For example, P23 stated: “When I noticed that the retrieved result was empty, I realized that some problems
should exist in the current query.ž In terms of C2, participants airmed the efectiveness of graph-based SQL
visualization in helping them better understand the relationship between the syntactical components of a query.
The learning barrier of this approach was also the lowest among all experimental conditions: users could view
the connections to a table by simply clicking the widget in the canvas.
Then, we investigated why the participants were less satisied with the efectiveness of repairing errors in

a SQL query for C1. There were two main factors. First, the repair strategies supported by the error-handling
mechanisms were limited. Speciically, participants could only replace the incorrect parts with their correct
substitutions using the drop-down menu of entity mappings, but for queries that require the addition, deletion,
or reorganization of clauses, users had to manually edit the query. This limitation led to frustration among
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Fig. 6. The result of the post-study questionnaire

participants and ultimately resulted in them not prioritizing using this error-handling mechanism for future
tasks. Second, the current approach provided little assistance for users in validating their edits. As a result, one
participant stated that: “I did not trust my own edits nor the suggested changes from the approach.ž (P20).

6 DISCUSSION AND IMPLICATIONS

6.1 Improving NL2SQL model evaluations through the error taxonomy

Currently, the evaluation of NL2SQL models emphasizes their accuracy from benchmark datasets. Though it
is fair and efective in indicating the overall performance of the model, it fails in evaluating the model at a
more ine-grained level, which impedes the development of error-handling strategies and the model’s real-world
application.
The error taxonomy we contributed helps us understand the types of syntactic and semantic errors that a

particular NL2SQL model tends to make in addition to only the overall accuracy. This information can provide
model developers with speciic information to improve the model’s robustness against certain error types,
thereby developing more accurate NL2SQL models. Future work can focus on the technical solutions on how to
design better NL2SQL models based on the taxonomy. Second, this taxonomy allowed us to make ine-grained
comparisons between models beyond the accuracy metrics. By comparing the error distributions of diferent
models, we can identify not only the relative advantages of individual models but also the common errors that
current models are prone to make.

Our work delves deep into the errors of the models, revealing that thoughmodel architectures and performances
difer, they all exhibit high error rates in particular error types. On the other hand, some models, though have a
relatively low overall accuracy, are capable of handling particular types of errors. Future work could focus on
studying one of those high error-rate error types to increase the model performance.

6.2 Design opportunities for NL2SQL error handling mechanisms

The result of our empirical study suggests that existing error handling mechanisms do not perform as well on
errors made by state-of-the-art deep-learning-based NL2SQL models on complex cross-domain tasks, despite the
promising results reported in the respective evaluations of these mechanisms. We think the main reason could
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be that our study used a much more challenging dataset than what was used in prior studies. We used queries
from Spider [90] (which is complex and cross-domain) that the state-of-the-art of NL2SQL models (instead of the
earlier NL2SQL models, which would start to make errors on simpler SQL queries) failed on. The dataset used
in our study more accurately represents realistic error scenarios that users encounter in natural language data
queries. Here, we identiied several design opportunities for more efective NL2SQL error-handling mechanisms.

6.2.1 Enabling efective mixed-initiative collaboration between users and error handling tools. Our indings indicate
that the current error-handling tools for NL2SQL models do not provide suicient feedback to users when they
attempt to modify SQL queries. While existing error-handling mechanisms, such as the conversational dialog
approach (C3), have focused on predicting correct modiications using static forms of user input, they have not
adequately addressed the need for mechanisms to elicit useful human feedback to guide model prediction. For
example, in C3, users provide input in the form of multiple-choice options for the recommended locations of
potential errors, which was considered confusing and not useful by some participants, particularly when “none of
the recommended options made sensež (P15) or “the errors existed in multiple places and cannot be ixed by only
selecting one answerž (P24). Therefore, we suggest that future work should focus on the development of efective
mixed initiative mechanisms that allow both users and error-handling tools to develop a mutual understanding
of the model’s current state of understanding and the user’s intent.

6.2.2 Implementing interactive approaches based on atention alignment. Our study and analysis on attention have
proved the correlation between erroneous queries and attention misalignment, suggesting that a potential way of
designing an error-handling mechanism is to enable users to correct the misalignment. However, a majority of
existing work focuses on automated attention alignment in the decoding process of an NL2SQL model without
involving humans. For example, some work [6, 46, 91] uses an external model trained on a dataset of human
attention to adjust the model attention, while some works may use a statistical [54] approach. Nevertheless,
aligning attention automatically has limitations such as requiring the design of a model-speciic alignment
mechanism and the preparation of a dataset of human attention, which can not be generalized eiciently.
Our study of model attention provides a supportive theory for designing interactive approaches for NL2SQL

models. In fact, existing interactive mechanisms can also be viewed as the implementation of attention alignment
between the user and the model. For instance, MISP [88] asks clariication questions to users when uncertain
about a generated token. This QA procedure aims to force the model’s attention to align with the user’s attention
when the model’s attention is very likely to be deviated. Our study also highlights the possibility of designing an
attention-based error-handling mechanism. For example, the interactive approach can enable users to comprehend
and directly manipulate the model’s attention. Various approaches may employ diferent mechanisms at diferent
layers of attention. But as long as humans are included in the loop, the model has an opportunity to align its
attention with the human’s attention through the model’s explanation and user feedback.

6.2.3 Comprehending the generated queries and inspecting how queries operate on data complement each other.

The results of the study suggested that, to support efective NL2SQL error handling for users, it is important
to help users (1) interpret the meaning of the generated SQL query, untangle its structures, and explain how it
corresponds to the user’s NL query; and (2) inspect the behaviors of the query on example data and examine
whether they match user intents and expectations. The two parts are interdependent on each other. In practice, the
user’s preferences for these diferent approaches may vary depending on their expertise. For example, in our study,
non-users and novice SQL users appreciated the explanation-based visualization mechanism (in SQLVis [51]) and
the NL explanations in step-by-step execution of the generated queries (in DIY [52]), because these mechanisms
lower the barrier to understanding the generated SQL queries for users who are unfamiliar with SQL syntax and
structures. This preference was also relected in their use of diferent mechanisms in the study. Experienced SQL
users, on the contrary, did not use mechanisms for explaining the meanings of the generated SQL queries as
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often. However, they found the entity mapping feature and the example tables (in DIY) useful for discovering
NL2SQL errors.

6.2.4 Opportunities for adaptive strategies. Lastly, the results of our user study suggest that the most efective
error-handling strategy to use depends on many factors such as user expertise, query type, and possible error
types. For example, expert users may require less sense-making strategies (e.g., step-by-step NL explanation),
while they may expect an intuitive execution result preview or an eicient validation of the updated answer.
In contrast, intermediate or novice users may need more mixed-initiative guides to facilitate error discovery
and repair. Meanwhile, as discussed in Section 5.5, the length, syntactical components, and potential error
types of a query would result in diferent barriers to users when repairing errors. For example, for queries with
more complicated syntactical structures, a visualization-based approach might be useful to reduce the barrier
to understanding the structure of the query. Therefore, we recommend that future work in this area consider
the development of adaptive error-handling strategies. An efective NL2SQL system could adapt its interface
features, models, and interaction strategies according to the use case and context. Speciically, it could consider
the semantic and syntactic characteristics of the query, whether the error is local (i.e., on a speciic entity in the
query) or global (i.e., regarding the overall query structure), and the user’s preferences and level of expertise.

7 LIMITATIONS AND FUTURE WORK

The current study has several limitations. First, the total number is unbalanced for each error type (as shown in
Section 3.5.1), which may cause bias in the study of error-handling mechanisms in Section 5. Despite the fact that
Spider is already a large-scale dataset, there were only a small number of example errors in some rare error types.
Therefore, we have to exclude these error types in our analysis. The problem could be addressed by conducting
larger-scale user studies with more participants and erroneous query data.
Second, despite that we reproduced four representative NL2SQL models based on the model architecture, it

is hard to cover all due to the lack of open-source implementation or the engineering challenges in adapting
them to our analysis pipeline. In addition, all the models used in our study are “black-boxž models that do
not provide much transparency into the process, which limits the selection of error-handling mechanisms.
Interactive models [19, 73], on the other hand, provide the transparency that could allow additional error handling
mechanisms, such as modifying the intermediate results of the model predictions. In future work, we will expand
the scope of our research to include additional types of representative NL2SQL models.

Third, in the cause analysis study, we only explored one of the possible causes Ð attention misalignment, a more
comprehensive analysis could be conducted to build up the factors that contribute to the model’s performance.
Additionally, we only tested one model in our study due to the computational resource and time limit. In
future work, it could be valuable to explore recently emerged large open-sourced foundational models such as
LlaMa-2 [78].
Lastly, while the example SQL queries were real erroneous queries made by NL2SQL models on realistic

databases and natural language queries, the setting of our study is still quite artiicial, lacking the real-world
task context in the actual usage scenarios of NL2SQL systems. In the future, it will be useful to study user
error handling behaviors through a ield study to better understand the impact of task-speciic contexts on user
behavior and the efectiveness of user handling of NL2SQL errors.

8 CONCLUSION

In this paper, we i) presented an empirical study to understand the error types in the SQL query generated by
NL2SQL models; ii) explored a possible cause of model errors by measuring the alignment of model-user attention
on the NL query, and iii) conducted a controlled user experiment with 26 participants to measure the efectiveness
and eiciency of representative NL2SQL error handling mechanisms. The error taxonomy summarized 48 types of
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errors and revealed their distribution characteristics. Our study also demonstrated a strong correlation between
the cause of model errors and the misalignment of attention between humans and models. The results of the user
experiment revealed challenges and limitations of existing NL2SQL error handling mechanisms on errors made
by state-of-the-art deep-learning-based NL2SQL models on complex cross-domain tasks. Based on the results, we
identiied several research opportunities and design implications for more efective and eicient mechanisms for
users to discover and repair errors in natural language database queries.
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